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Abstract

We study the ratio of viscosity to entropy density in Yukawa one-component
plasmas as a function of coupling parameter at fixed screening, and in realistic
warm dense matter models as a function of temperature at fixed density. In these
two situations, the ratio is minimized for values of the coupling parameters that
depend on screening, and for temperatures that in turn depend on density and
material. In this context, we also examine Rosenfeld arguments relating transport
coefficients to excess reduced entropy for Yukawa one component plasmas. For these
cases we show that this ratio is always above the lower-bound conjecture derived
from string theory ideas.
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1 Introduction

In 2005, Kovtun et al. (KSS)[1] conjectured from string theory arguments that
in general, equilibrium media,

η

s
≥ ~

4πkB
, (1)

where η is the shear viscosity, s the entropy density, ~ the reduced Planck
constant, and kB the Boltzmann constant. This inequality is supposed to be
valid for any finite-temperature relativistic quantum-field theory with zero
chemical potential. Equality is obtained for theories with gravity duals, i.e.,
with anti de Sitter(AdS)/conformal field theory (CFT) correspondence. Given
the speed of light does not appear, the inequality (1) could be true for non-
relativistic systems. Kovtun et al.[1] further motivated their conjecture by
showing data proving that (1) holds for common substances such as helium,
nitrogen, or water. The inequality (1)can be examined for more exotic states
of matter such as cold atomic gases or hot quark gluon plasmas (QGP)[2].
Indeed, the AdS/CFT correspondence finds applications in relativistic heavy-
ion collisions in which QGP can be produced[3].

Thoma and Morfill[4] studied what happens to (1) in one-component plas-
mas (OCP)[5–8]. They have shown that inequality (1) is also valid for OCP,
demonstrating that the ratio η/s is indeed minimized as function of the cou-
pling parameter in strongly-coupled OCP when the thermal de Broglie length
Λ is kept equal to the Wigner-Seitz radius d.

In this work, we extend the study of Thoma and Morfill[4] in two directions,
to the case of the Yukawa screened OCP (YOCP)[8–16]. We also consider
more realistic models of solid density materials in the warm dense matter
(WDM) regime. We discuss the relevance of the Rosenfeld quasi-universal
scaling law relating transport coefficients to excess reduced entropy in simple
fluids[17,18]. The aim of this paper is to see what happens to the viscosity
to entropy-density ratio in warm dense matter or screened strongly-coupled
one-component plasmas.

2 YOCP

The YOCP are characterized by two parameters[16], i.e., the coupling param-
eter

Γ =
(Ze)2

kBTd
(2)
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and the screening parameter

κ = d/λD. (3)

In these expressions, Z is the particle charge in units of elementary charge e,
T the temperature, kB the Boltzmann constant, and λD the screening length.
This model considers a single type of particle of charge Ze in a polarizable
charge-neutralizing background for which the screening property of the plasma
is expressed by the Yukawa potential

φ(R) =
(Ze)e−R/λD

R
. (4)

λD can be described by the Debye length, or more generally, by the finite-
temperature Thomas-Fermi screening-length[19–21] which interpolates between
the zero-temperature Thomas-Fermi screening-length and the Debye length.

The thermal de Broglie length Λ =
√

2π~2/mkBT , where m is the mass of the
plasma particles. The Wigner-Seitz radius d is related to the particle number
density n = N/V = 3/4πd3, where N is the particle number in the volume V .

The plasma frequency ωp =
√

4πZ2e2n/m.

The ratio (1) involves two quantities, the shear viscosity η and the entropy
density s. In our analysis, we usually consider a dimensionless viscosity

η∗ =
η

mnωpd2
. (5)

Care should be taken, given the various ways dimensionless viscosities ap-
pear in the literature. Fits exist for η∗ as a function of Γ, κ that are de-
duced from molecular dynamic (MD) simulations[4,8]. One can show that

mωpd
2 =

√
3ΓvT dm, where vT =

√

kBT/m is the thermal velocity of the

plasma particles. By definition, the entropy density s = S/V . In YOCP, we
usually consider the dimensionless internal energy u = U/NkBT , free energy
f = F/NkBT , and entropy s∗ = S/NkB. U , F , and S are the internal energy,
free energy, and entropy related by the thermodynamic relation F = U−TS of
the particle system. We consider only systems in thermodynamic equilibrium.
Anticipating our application of the Rosenfeld scaling method, the normalized
entropy s∗ can be split into two parts, i.e., an ideal part sid, and an excess
part sex

s∗ = sid + sex. (6)
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The ideal part is given by[5]

sid =
5

2
− log n − 3 log Λ =

5

2
+ log(

4π

3
) − 3 log(

Λ

d
). (7)

One can obtain sex as a function of Γ and κ using fits from MD simulations[9–
13] or using the variational modified hypernetted chain (VMHNC) approach[22]
applied to the YOCP[15]. One can show[4] that

kB
η

s
= R(Γ, κ)vT md, (8)

where

R(Γ, κ) =

√
3Γη∗

s∗
. (9)

Written in the form (8), one can see that kBη/s has the dimensions of an
action, since R(Γ, κ) is dimensionless. Indeed, if we express vT and d in atomic
units, one finds that kBη/s is proportional to ~. Then, the question concerns
the value of this proportionality coefficient with respect to the string theory
conjecture. It clearly depends on the system of interest. Note also that η∗ and
s∗ depend on Γ and κ. Since we are considering a classical system of particles,
Λ < d leading to vT md >

√
2π~. If we use the lower limit that corresponds to

d = Λ in (8), the string theory limit (1) now reads

√
32π3R(Γ, κ) > 1. (10)

We plot in Fig 1 the minimum of the left hand side of (10) as a function of Γ
for various κ using the VMHNC[15], the Caillol-DeWitt[13,23], or the Ham-
aguchi[10,11,15] equations of state with a κ-dependent normalized-viscosity
fit[8] or the VMHNC with a κ-independent normalized-viscosity fit[8]. We
plot also results obtained using the hard-sphere Gibbs-Bogolyubov inequality
(HS-GBI)[14]. When the fit of the normalized, i.e., dimensionless viscosity de-
pends on the screening parameter κ (see Table IV in Ref.[8]), results does not
depend on the equation of state used. However, we can see that using the fit
independent of κ with κ ≤ 3 can have a strong impact on results. This kind
of fit should be used with caution. In any case, one can see that inequality
(10) is obeyed. Our results are consistent with the one obtained by Thoma
and Morfill[4] for OCP. They found 4.89 compared to values around 5. To
be complete, we have also plotted results using the variational method based
on the Gibbs-Bogolyubov inequality and the hard-sphere system to describe
the YOCP[14]. The minimum ratio is a factor two above the previous results.
This difference could be explained both by the approximate treatment of the
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equation of state using the Carnahan-Staring and Perkus-Yevick approxima-
tions and by the approximate estimation of the viscosity of OCP using the
hard-sphere viscosity[14,16]. Note that the results are smooth and close to 10.
Interestingly, this value is close to the values KSS show for helium, nitrogen,
and water. Since in this example, we are on the boundary for which quantum
effects may play a role, we are not so far from the string-theory lower-bound
equal to one in our writing. This is one example of a situation for which the
value of the minimum ratio is closer to the conjectured lower bound with the
possible exception of the QGP[24]. For instance, in this reference, the mini-
mum ratio was found to be roughly equal to 2π. Note finally that the existence
of a minimum ratio is related to the one known for viscosity, which is a di-
rect consequence of gas-like (atomic) to liquid-like (molecular) behavior[25,26]
when Γ increases, i.e., when we consider the transition between weakly-coupled
to a strongly-coupled YOCP.

3 Warm Dense Matter

One can also ask how the inequality (1) fares in more realistic warm dense
matter models. As a first example, we plot in Fig 2 the normalized ratio
(4πkBη)/(~s) for liquid aluminum at density 2.37 g/cm3 between 933 K and
20000 K using the HS-GBI method applied to the CPMD code[27]. 933 K
corresponds to the melting point of aluminum at this density. We can see that
the normalized ratio is minimum at TMin = 8000K. The string theory bound
is well satisfied. However, unlike the cases of the OCP and YOCP models,
the minimum value is much larger, i.e, 123 vs. ∼ 10. It could be interesting
to see what happens for hydrogen[28] or helium[29] near their metal-insulator
transitions and for fluid lithium[30]. We expect the normalized ratio to be
closer to one for these cases.

In Figures. 3 and 4, we plot TMin, the normalized ratio (4πkBη)/(~s), and Λ/d
for hydrogen and helium as a function of density using the Thomas-Fermi
method[31] to describe the ionization and the screening, i.e., the coupling
and screening parameters, and the HS-GBI to get viscosity and entropy using
the same method as for YOCP. TMin is the temperature obtained when the
normalized ratio is minimum. In fact, the Thomas-Fermi approach allows our-
selves to describe WDM as effective YOCP. As expected, we are closer to one
by considering these two elements, hydrogen being the closest. These are den-
sities of interest for inertial confinement fusion[32]. The minimum temperature
increases with density, whereas the normalized ratio shows a maximum at 5.36
g/cm3 (TMin = 0.89 eV and normalized ratio equal to 12.02) for hydrogen, and
41.12 g/cm3 (TMin = 3.97 eV and normalized ratio equal to 28.22) for helium.
In any case, the string-theory bound is satisfied, but one may wonder what
happens for hydrogen if we keep on compressing it to see how we match with
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results from nuclear theory. This kind of study is a real example of research
that can mix various parts of usually uncorrelated domains of physics. This
is a strong indicator of its fruitfulness. Concerning the ratio Λ/d, we can see
that in both cases, it is lower that one and there is a minimum reached at
5.51 g/cm3 (TMin = 0.89 eV and Λ/d = 0.41) for hydrogen and 42.66 g/cm3

(TMin = 4.07 eV and Λ/d = 0.12) for helium. Normalized ratio maximum
and Λ/d ratio minimum are clearly related. Again, the quantum character of
hydrogen is more significative than the helium one since the ratio Λ/d is the
largest for hydrogen for the studied cases.

4 Rosenfeld method for YOCP

A very interesting result can be found if we consider again the YCOP and the
Rosenfeld quasi-universal scaling law relating transport coefficients to excess
reduced entropy in simple fluids[17,18]. From Eq. (7), one can see that if d = Λ,
the entropy of the ideal gas is constant. For dilute and dense simple fluids,
shear viscosity and self-diffusion depend only on the excess reduced entropy
sex when properly normalized[18]. The normalized ratio reads[18]

4πkBη

s~
=

219/6π11/6

31/3

0.2e0.8s̃

5

2
+ log(4π

3
) − s̃

(11)

for dense fluids (s̃ > 1, freezing is obtained when 4 < s̃ < 5), and

4πkBη

s~
=

219/6π11/6

31/3

0.27s̃−2/3

5

2
+ log(4π

3
) − s̃

(12)

for dilute fluids (s̃ < 0.1, the ideal gas is for s̃ = 0). We introduced s̃ = −sex

for simplicity. The consequence of this scaling is very interesting because we
can see that the normalized ratio is minimum for some nearly universal s̃0.
As an illustration, we have chosen a simple cubic polynomial interpolation of
the logarithm of the normalized ratio using s̃ as a variable between s̃ = 0.1
and s̃ = 1, i.e., in the domain that makes the transition between dilute to
dense fluids. One finds that s̃0 = 0.546 and the corresponding normalized
ratio is equal to 4.84. This value is very close to the one found by Thoma
and Morfill[4] for OCP, i.e., 4.89, and to what has been obtained in Fig.
1 with Caillol-DeWitt, Hamaguchi, or VMHNC cases. Note that if we use
sex = −0.546 for OCP[4], one finds that the minimum is obtained for Γ =
4.95 which differs notably from the value of Γ = 12 previously obtained by
Thoma and Morfill[4]. Though approximate, the approach of Rosenfeld in
the case of YCOP is rather remarkable because the coupling and screening
parameters disappear completely when d = Λ. This approach can really be
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called quasi-universal. As an illustration, we plot in Fig. 5 the normalized
ratio as a function of minus the excess reduced entropy to show how this quasi
universal curve looks as well as a cubic polynomial interpolation matches with
dense and dilute domains. Since we are assuming that d = Λ, note that the
ratio becomes singular for s̃ = 5/2+ log(4π/3). It is also singular for the ideal
gas, i.e., when s̃ = 0. In Fig. 6 we plot the ratio of Γ to Γmel as a function
of κ, where Γmel is the value of Γ at the fluid-solid phase-transition[11,8] and
Γ is such that sex(Γ, κ) = −0.546 using VMHNC. For comparison, we give
(diamonds) the value of Γ/Γmel for the case VMHNC encountered in Fig. 1.
For the cases studied, Γ/Γmel ≈ 0.03 when sex(Γ, κ) = −0.546. It is more
erratic for diamonds. Additional viscosity fits as a function of κ could be
helpful.

Up to now for YOCP, we have examined what happens when d = Λ. It is
possible to extend this study at fixed Λ/d < 1. The only change is to divide
the normalized ratio by Λ/d while still using Eq. (7). As an illustration, we
plot in Fig 7 what happens to s̃0 and the corresponding normalized ratio
as a function of Λ/d < 1. One can see that s̃0 does not vary too much,
being a decreasing function of Λ/d. On the contrary, the variation of the
normalized ratio is far more important, being a decreasing function of Λ/d
too. As expected, the smaller Λ/d is, the more classical the system is. It could
be interesting to extend this study in the quantum regime where Λ/d > 1 to see
what happens to the normalized ratio. This is not easy because we need then
an equation of state and transport coefficients for interacting many-particle
quantum systems[33–35].

5 Conclusion

We have shown that the ratio of the viscosity to the entropy density satisfied
the KSS lower bound conjecture in screened strongly coupled plasmas and
realistic warm dense matter models with typical values of (4πkBη)/(~s) ∼ 10
to 100. No violation of the string-theory lower-bound was found for YOCP
or the WDM cases that were considered. The string theory lower-bound also
was found to combine remarkably with the Rosenfeld quasi-universal scaling
law to predict a unique value of −0.546 for the reduced excess entropy at the
minimum ratio point.
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Fig. 1. (Color on line) Minimum ratio as a function of screening parameter κ us-
ing the VMHNC[15], the Caillol-DeWitt[13,23], or the Hamaguchi[10,11,15] equa-
tion of state with a κ-dependent normalized-viscosity solid-density aluminum[8].
We plot also results obtained using the hard-sphere Gibbs-Bogolyubov inequality
(HS-GBI)[14] or the VMHNC with a κ-independent normalized-viscosity fit[8] (all).
The dashed-line is the string-theory lower-bound equal to one.
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aluminum using the HS-GBI method applied to the CPMD code[27].
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hydrogen as a function of density. The Thomas-Fermi HS-GBI has been used to
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